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A Case for Semi-Supervised Learning

Our technology-rich and connected world produces lots of Data...

Unlabeled Data : Inputs
Easy to Collect/Generate

Labeled Data : Inputs + Outputs
(“Labels”)

Difficult to Collect/Generate

image credits: see references
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Semi-Supervised Learning (SSL)

Idea: Given a small amount of labeled data, can I infer “accurate” labelings for
the unlabeled data?
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Graph-Based SSL

Idea: Given a small amount of labeled data and a similarity graph created
from all inputs, can I infer “accurate” labelings for the unlabeled data?
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A Case for Active Learning

Great, you’ve leveraged using both labeled and unlabeled data!...

Why not try to improve?

Hand-label the entire dataset...
COSTLY

Hand-label only a few more?
DOABLE
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Active Learning

Idea: Given a small amount of labeled data, which unlabeled points would “best
help” my semi-supervised learning classifier?
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Setup

Observe labeled data D` = {(xi, yi)}i∈L and unlabeled data XU = {xj}j∈U .

X = {x1,x2, . . . ,xN} = XL ∪ XU

L : labeled indices, U : unlabeled indices

Semi-Supervised Learning
Given labeled data L, can we accurately infer the
labelings on U?

Active Learning
Given labeled data L, can we judiciously “choose”
unlabeled points Q ⊂ U to label that will improve the
output of the SSL model?
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Active Learning Loop

Acquisition Function: Criterion that quantifies the utility of labeling an
unlabeled point k ∈ U .
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Balancing Query Characteristics

Active Learning – select “useful” points to label that will improve your classifier

Representative : “looks” representative of the data

Informative : help to refine the classifier’s decision boundary

Exploration : “explore” the inherent geometric/clustering structure

Exploitation : “exploit” the classification structure that have learned so far
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Exploration vs Exploitation Balance

→

Potential SSL Classifier
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Exploration vs Exploitation Balance

Exploitation

Exploration

Kevin Miller AL in GBSSL October 5, 2021 15 / 51



Exploration vs Exploitation Balance

Exploitation Exploration
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Exploration vs Exploitation Balance

Ground Truth Boundaries

Exploitation X

Exploration X
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Graph Construction

Given data X = {x1,x2, . . . ,xN}, construct similarity graph G(Z,W ), where

Z = {1, 2, . . . , N}

Wij = κ(xi,xj)

di =
∑

j∈ZWij

degree matrix D = diag(d1, d2, . . . , dN )

Graph Laplacians

L = D −W , unnormalized

Ln = I −D−1/2WD−1/2, normalized

Lrw = I −D−1W , random walk

Useful Properties:

Positive, semi-definite operators

Eigenvectors encode clustering
structure

Kevin Miller AL in GBSSL October 5, 2021 17 / 51



Graph Construction

Given data X = {x1,x2, . . . ,xN}, construct similarity graph G(Z,W ), where

Z = {1, 2, . . . , N}

Wij = κ(xi,xj)

di =
∑

j∈ZWij

degree matrix D = diag(d1, d2, . . . , dN )

Graph Laplacians

L = D −W , unnormalized

Ln = I −D−1/2WD−1/2, normalized

Lrw = I −D−1W , random walk

Useful Properties:

Positive, semi-definite operators

Eigenvectors encode clustering
structure

Kevin Miller AL in GBSSL October 5, 2021 17 / 51



Binary Graph-Based SSL

Consider family of graph-based SSL models, using a perturbed graph Laplacian
Lτ = L+ τ2I:

û = arg min
u∈RN

1
2 〈u, Lτu〉+

∑
j∈L

`(uj , yj) =: arg min
u∈RN

J`(u; y), (1)

for different loss functions ` with parameter γ:

`(x, y) = (x− y)2/2γ2, (Regression)

`(x, y) = ln(1 + e−xy/γ), (Logistic)

`(x, y) = − ln Ψγ(xy), (Probit)

where Ψγ(t) =
∫ t
−∞ ψγ(s)ds is CDF of log-concave PDF ψγ(s).
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Multiclass Graph-Based SSL

With perturbed graph Laplacian Lτ and nc the number of classes,

Û = arg min
U∈RN×nc

1
2 〈U,LτU〉F +

∑
j∈L

`(uj ,yj) =: arg min
U∈RN×nc

J`(U ;Y ),

for different loss functions ` with parameter γ:

`(s, t) = 1
2γ2 ‖s− t‖2

2, (Multiclass Gaussian Regression)

`(s, t) = −
∑nc

c=1 tc ln(sc), (Cross-Entropy)
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Probabilistic and Bayesian Perspective

Optimizer û can be viewed as maximum a posteriori (MAP) estimator

arg min
u

J`(u; y) ⇐⇒ arg max
u

exp(−J`(u; y))

= arg max
u

exp
(
−1

2 〈u, Lτu〉
)

︸ ︷︷ ︸
prior

exp

(
−
∑
j∈L

`(uj , yj)

)
︸ ︷︷ ︸

likelihood

= arg max
u

P(u|y)

for a posterior distribution P(u|y) ∝ exp(−J`(u; y)).

Different loss functions give different likelihoods
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“Gaussian Models”

Harmonic Functions (HF) Model – AKA “Laplace Learning”
Assuming hard constraints for labeling1, have conditional distribution:

uU |y ∼ N (uhf , L−1
U,U ), uhf = −L−1

U,ULU,Ly

with uL = y.

Gaussian Regression (GR) Model
With `(x, y) = (x− y)2/2γ2, then likelihood/prior/posterior is Gaussian.

P(u|y) ∝ exp
(
−1

2 〈u, Lτu〉
)

exp

(
− 1

2γ2

∑
j∈L

(uj − yj)2

)
∼ N (û, C), û = 1

γ2CP
Ty, C−1 = L+ 1

γ2P
TP,

where P : RN → R|L| is projection onto labeled set L.

1Does not actually rigorously fit into Bayesian framework like others
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Look-Ahead & Model Retraining

Look-Ahead model with index k and label yk:

û+k,yk := arg min
u∈RN

Jk(u; y, yk) = arg min
u∈RN

1
2 〈u, Lτu〉+

∑
j∈L

`(uj , yj)+
plus k︷ ︸︸ ︷

`(uk, yk)

“hypothetical model”, with k ∈ U and label yk

For Gaussian model, look-ahead posterior distribution’s parameters from the
current posterior distribution

without expensive model retraining – rank-one updates

GR: û+k,yk = û + (yk−ûk)
γ2+Ckk

C:,k, C+k,yk = C − 1
γ2+Ckk

C:,kC
T
:,k
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Model Change

Model Change: How much would labeling k ∈ U change the classifier if we
added it to the labeled set with pseudo-label ŷk?

k∗ = arg max
k∈U

A(k) = arg max
k∈U

‖û+k,ŷk − û‖2

Similar idea to previous works2, but applied to a more general family of classifiers.

Other Acquisitions Using Look-Ahead:

VOpt (Ji and Han, 2012): min Tr[C+k,yk ]

Error Bound (Ji and Han, 2012): min Tr[(C+k,yk )2]

EER (Zhu et al, 2003): minimize expected error of look-ahead

All these use Gaussian models, i.e. look-ahead updates exact

2Cai, Zhang, and Zhou, “Maximizing Expected Model Change for Active Learning in Regression”, 2013; Karzand and Nowak, “MaxiMin
Active Learning in Overparameterized Model Classes”, 2020.
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Non-Gaussian Posterior?

When likelihood not Gaussian, posterior P(u|y) is non-Gaussian..

Problems:

model classifier as mean µ = Eu∼P [u]? or MAP estimator
û = arg maxP(u|y)?

compute mean, µ, and covariance C = Eu∼P
[
(u− µ)(u− µ)T

]
?

(potentially expensive!)

Look-ahead updates??

With non-Gaussian models, we lose these nice properties. What to do?

Let’s approximate with Gaussian, and see what happens!
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Laplace Approximation

Laplace approximation is a popular technique for approximating non-Gaussian
distributions P with a Gaussian distribution.

x ∼ N (x̂, Ĉ), x̂ = arg max
x∈RN

P(x), Ĉ =
(
−∇2 ln(P(x))|x=x̂

)−1
,

where

x̂ : MAP estimator of P
Ĉ : Hessian matrix of the negative-log density of P, evaluated at x̂

photo credit : http://wiljohn.top/2019/04/14/PRML4-4/
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Laplace Approximation - Binary

u|y ∼ N (û, Cû), û = arg min
u∈RN

J`(u; y),

and then calculate covariance of Laplace Approximation Cû

Cû =
(
∇2

uJ`(û; y)
)−1 =

(
L+

∑
j∈L

F ′(ûj , yj)ejeTj

)−1

,

where
F (x, y) := ∂`

∂x
(x, y), F ′(x, y) := ∂2`

∂x2 (x, y).
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Approximate Look-Ahead Update - Binary

How to approximate look-ahead model update, û+k,ŷk = arg min Jk,ŷk` ?

have Cû (i.e. inverse Hessian evaluated at MAP estimator û)

Try one step of Newton’s method, starting at û:

ũ+k,ŷk = û−
(
∇2

uJ
k,ŷk
` (û; y, ŷk)

)−1 (
∇uJ

k,ŷk
` (û; y, ŷk)

)
= . . .

= û− F (ûk, ŷk)
1 + F ′(ûk, ŷk)[Cû]kk

[Cû]:,k

where
F (x, y) := ∂`

∂x
(x, y), F ′(x, y) := ∂2`

∂x2 (x, y).

Simple update!
∗ GR: this reduces to the exact look-ahead update!
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Model Change Acquisition Function

Employ approximate update:

A(k) = ‖ûk,ŷk − û‖2 ≈
∥∥ũk,ŷk − û

∥∥
2

=
∥∥∥∥ F (ûk, ŷk)

1 + F ′(ûk, ŷk)[Cû]kk
[Cû]:,k

∥∥∥∥
2

=
∣∣∣∣ F (ûk, ŷk)
1 + F ′(ûk, ŷk)[Cû]kk

∣∣∣∣ ‖[Cû]:,k‖2 .

Problem: Cû =
(
L+

∑
j∈L F

′(ûj , yj)ejeTj
)−1
∈ RN×N . . .
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Spectral Truncation

Consider only first M < N eigenvalues and eigenvectors of graph Laplacian, L:

0 = λ1 ≤ λ2 ≤ . . . ≤ λM , v1,v2, . . . ,vM .
Λτ = diag

(
λ1 + τ2, . . . , λM + τ2)

V = [v1 v2 . . . vM ] ∈ RN×M

α ∈ RM (binary), A ∈ RM×nc (multiclass)

Binary: (u = V α)

J`(u; y) = 1
2 〈u, Lτu〉+

∑
j∈L

`(uj , yj)

→ 1
2 〈α,Λτα〉+

∑
j∈L

`(eTj V α, yj) =: J̃`(α; y),

Multiclass: (U = V A)

J`(U ;Y ) = 1
2 〈U,LτU〉F +

∑
j∈L

`(uj ,yj)

→ 1
2 〈A,ΛτA〉F +

∑
j∈L

`(eTj V A,yj) =: J̃`(A;Y ).
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Model Change in Spectral Truncation

Using covariance matrix (i.e. inverse Hessian) C̃α̂ =
(
∇2

αJ̃`(α̂; y)
)−1 of the

spectral truncation setup, we can apply approximate update as before:

A(k) = ‖ûk,ŷk − û‖2 ≈
∥∥ũk,ŷk − û

∥∥
2

=
∥∥V (α̃k,ŷk − α̂

)∥∥
2

=
∥∥α̃k,ŷk − α̂

∥∥
2

= . . .

=
∣∣∣∣ F (ûk, ŷk)
1 + F ′(ûk, ŷk)(vk)T C̃α̂vk

∣∣∣∣ ∥∥C̃α̂vk
∥∥

2
,

where we recall that V α = u, so that

ûk = eTk V α̂ = (vk)T α̂,

where vk ∈ RM is the kth row of V .
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Approximate Look-Ahead - Multiclass

Similar result for multiclass case, but a little lengthy to describe...

Ã+k,ŷk = Â−
(
∇2
AJ̃ k,ŷk (Â;Y, ŷk)

)−1 (∇AJ̃ k,ŷk (Â;Y, ŷk)
)︸ ︷︷ ︸

simplifies to be rank nc
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)−1 (∇AJ̃ k,ŷk (Â;Y, ŷk)
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Application: Hyperspectral Imagery (HSI)

Pixel Classification

Seek to classify the pixels into
classes (e.g. water, dirt, grass,
metal, etc)

Noisy measurements, corrupted by
weather and atmospheric effects

Figure 1: image credit: Christophe, Mailhes, & Duhamel (2009)

Apply active learning to incorporate human-in-the-loop to improve the accuracy
of graph-based semi-supervised classification of pixels.
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Multiclass Experiments - HSI

Figure 2: Salinas-A

Figure 3: Urban

Graph Construction:

15 nearest neighbors, cosine similarity

M = 50 eigenvalues

Experiments:

Initially label 2 per class, select 500 points

Acquisition Functions:

Random

Uncertainty

VOpt (Ji and Han, 2012)

Σ-Opt (Ma et al, 2013)

Model Change
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Results - Multiclass

Multiclass GR Results:

0 100 200 300 400 500

Number of labeled points, |L|

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

MC-MGR

RAND-MGR

SOPT-MGR

UNC-MGR

VOPT-MGR

(a)MNIST

0 100 200 300 400 500

Number of labeled points, |L|

0.7

0.8

0.9

A
cc

ur
ac

y

MC-MGR

RAND-MGR

SOPT-MGR

UNC-MGR

VOPT-MGR

(b) Salinas A

0 100 200 300 400 500

Number of labeled points, |L|

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

MC-MGR

RAND-MGR

SOPT-MGR

UNC-MGR

VOPT-MGR

(c)Urban

Cross-Entropy Results:
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Explore vs Exploit Demo

Figure 4: 2 x 2 Binary Checkerboard

2000 total points, 2 initially labeled points

Select 80 points sequentially via Uncertainty, Model Change, and VOpt.
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Comparison of Query Points

Uncertainty Model Change VOpt
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Accuracy Comparison
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MCVOPT

Laplace Learning
(HF)

Gaussian Regression

C L−1
U,U

(
L+ 1

γ2P
TP
)−1

VOpt 1
Ckk
‖C:,k‖2

2
1

γ2+Ckk
‖C:,k‖2

2

Uncertainty |ûk − ŷk| |ûk − ŷk|
Model Change (MC) |ûk−ŷk|

Ckk
‖C:,k‖2

|ûk−ŷk|
γ2+Ckk

‖C:,k‖2

MCVOPT: A(k) = |ûk − ŷk|︸ ︷︷ ︸
“uncertainty”

1
γ2 + Ckk

‖C:,k‖2
2︸ ︷︷ ︸

“kernel info”

Exploitation + Exploration
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Application: SAR Data

UCLA REUCAM 2021 Project – joint work with Dr. Jeffrey Calder (UMN)
NGA NURI Grant #HM04762110003, (Dr. Andrea Bertozzi, PI)

Undergraduates: Xoaquim Baca (Harvey Mudd), Jack Mauro (LMU), Jason

Setiadi (UMN), Zhan Shi (UCLA)

Figure 5: image credit: Perumal, Vasuki (2013)

MSTAR Dataset

Synthetic Aperture Radar (SAR)

Automatic Target Recognition
(ATR)

6,784 images of size 88× 88
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SAR Data Pipeline

Figure 6: Unsupervised CNNVAE Representation Learning

Figure 7: Supervised CNN Representation Learning
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Initial Results

CNN: 5%, 10%, 15%, ...
training data, test various ML
algorithms

“Upper bound” for
capability of unsupervised
representations?

CNN-VAE : all training data,
but no label information

Figure 8: Performance of CNN vs CNNVAE
representations with various ML algorithms
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Active Learning Model

SSL Model: Laplace Learning

Active Learning Model for LL:

Kernel: K := L−1 ∈ RN×N

Covariance: C = L−1
U,U = KU,U −KU,LK−1

L,LKL,U

K−1
L,L not always invertible when using spectral truncation... unstable

Using GR model’s covariance solves this instability issue!

CGR =
(
L+ 1

γ2P
TP

)−1

= K −K:,L
(
KL,L + γ2I|L|

)−1︸ ︷︷ ︸
invertible, even in sp. trunc.

KL,:

(Note Laplace Learning is γ → 0+ limit of GR)
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MSTAR Results

With graph built from CNNVAE representations and 1 initially labeled point per
class, select 500 active learning query points sequentially.

Figure 9: MSTAR Active Learning Results

Results:
Achieve 99.7% accuracy within
400 queries!

Best: Uncertainty

Previous slide max’d out at
97.7% after 3K labeled points
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MSTAR Results Discussion

Uncertainty usually characterized as exploitative, suboptimal.. Why did it
perform so well?

t-SNE Embedding Visualization

Colored according to ground-truth classes

Suggest natural clustering structure

Laplace Learning Degeneracy

“Spiky” behavior in low-label rates (Calder et al
2020)
“Not confident” in unexplored clusters

Encourages exploration!
photo credit: Calder et al, 2020
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Some Takeaways

Need to Balance:

Conservative

Model “Confidence”

Aggressive

1
γ2 + Ckk

‖C:,k‖2
2

Exploration

Acquisition Function Design

|ûk − ŷk|

Exploitation

Problem: How to balance to get proper exploration vs exploitation tradeoff?
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Future Directions

Exploration vs Exploitation
Mathematical definition for exploration?
When to “flip switch”?
Acquisition functions that naturally switch? (provably?)
Ad-hoc combinations

Accuracy curves are the wrong metric for comparison, I believe
Dataset-dependent quantity that captures exploration behavior?

Batch Learning – Is there a way that is efficient to select multiple query
points at a time?

Coresets... but these lack human-in-the-loop
Submodular functions (VOPT)
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Misc Image References

https://hocview.com/fitness-tracker-that-does-not-require-a-smartphone-or-computer/

https://www.kenhub.com/en/library/anatomy/normal-chest-x-ray

https://edu.gcfglobal.org/en/gmail/introduction-to-gmail/1/

https://www.cs.toronto.edu/~kriz/cifar.html
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