Scalable and Sample-Efficient Active

Learning for Graph-Based Classification

Kevin Miller

University of California, Los Angeles
Advisor: Dr. Andrea L. Bertozzi
Supported by NDSEG Research Fellowship

IMA Data Science Seminar é Im

INSTITUTE FOR MATHEMATICS
AND ITS APPLICATIONS

October 5, 2021




Overview

Motivation

Kevin Miller AL in GBSSL October 5, 2021



A Case for Semi-Supervised Learning MZ

Our technology-rich and connected world produces lots of Data...

m Unlabeled Data : Inputs
m Easy to Collect/Generate

m Labeled Data : Inputs + Outputs
(“Labels™)

m Difficult to Collect/Generate
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m Unlabeled Data : Inputs
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m Labeled Data : Inputs + Outputs
(“Labels™)
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Semi-Supervised Learning (SSL)

Idea: Given a small amount of labeled data, can | infer “accurate” labelings for
the unlabeled data?
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Graph-Based SSL

Idea: Given a small amount of labeled data and a similarity graph created

from all inputs, can | infer “accurate” labelings for the unlabeled data?
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A Case for Active Learning

Great, you've leveraged using both labeled and unlabeled datal...

Why not try to improve?
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Great, you've leveraged using both labeled and unlabeled datal...

Why not try to improve?

m Hand-label the entire dataset...
COSTLY
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A Case for Active Learning

Great, you've leveraged using both labeled and unlabeled datal...

Why not try to improve?

m Hand-label the entire dataset... m Hand-label only a few more?
COSTLY DOABLE
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Active Learning

Idea: Given a small amount of labeled data, which unlabeled points would “best

help” my semi-supervised learning classifier?

/\

is R
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Overview

Problem Formulation and Graph-Based SSL Model
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Setup

Observe labeled data Dy = {(x:,v:) }icc and unlabeled data Xy = {x;}jcu-
X = {Xl,Xz,...,XN} =X U Xy

m L : labeled indices, U : unlabeled indices

Semi-Supervised Learning
Given labeled data £, can we accurately infer the

labelings on U?

Active Learning

Given labeled data £, can we judiciously “choose”
unlabeled points Q@ C U to label that will improve the
output of the SSL model?

RJI
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Active Learning Loop

Active Learning Query and Update

Train SSL Select query
Classifier points @ C U Query oracle for _
with £ and via acquisition labels {yx }reco izl Jo = U
labels {y;}jec function, A
1 |

Acquisition Function: Criterion that quantifies the utility of labeling an
unlabeled point k € U.
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Balancing Query Characteristics

Active Learning — select “useful” points to label that will improve your classifier

Representative

= Representative : “looks” representative of the data

m Informative : help to refine the classifier’s decision boundary
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Balancing Query Characteristics

Active Learning — select “useful” points to label that will improve your classifier

Representative

= Representative : “looks” representative of the data

m Informative : help to refine the classifier’s decision boundary

Exploration Exploitation

m Exploration : “explore” the inherent geometric/clustering structure

m Exploitation : “exploit” the classification structure that have learned so far
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Exploration vs Exploitation Balance
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Exploration vs Exploitation Balance

3

Potential SSL Classifier
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Exploration vs Exploitation Balance
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Exploration vs Exploitation

Balance
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Exploration vs Exploitation Balance
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Exploration vs Exploitation Balance
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Graph Construction

Given data X = {x1,X2,...,Xn}, construct similarity graph G(Z, W), where
s Z={1,2,...,N}
m Wi = k(xq,%x;5)
mdi=3 e, Wi
m degree matrix D = diag(di,d2,...,dn)
Graph Laplacians

m L =D — W, unnormalized

mL,=1- D71/2WD71/2, normalized

wm L =1— D 'W, random walk
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Graph Construction

Given data X = {x1,X2,...,Xn}, construct similarity graph G(Z, W), where
s Z={1,2,...,N}
m Wi = k(X4,%5)
mdi=3 e, Wi
m degree matrix D = diag(di,d2,...,dn)

Graph Laplacians Useful Properties:
» L =D —W, unnormalized m Positive, semi-definite operators
L, =1-D""*WD™'?, normalized m Eigenvectors encode clustering
w L. =1 — D 'W, random walk structure

Kevin Miller AL in GBSSL October 5, 2021 17/
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Binary Graph-Based SSL

Consider family of graph-based SSL models, using a perturbed graph Laplacian
L. =L+7°I:

1 = arg min %(u, Lyu) + Zé(uj,yj) =: argmin Jy(u;y), (1)

uerN fer uerN
for different loss functions ¢ with parameter ~:
m {(2,9) = (x —y)?/2v*,  (Regression)
m l(z,y) =In(14+e"¥/7), (Logistic)
m {(z,y) = —InT,(zy), (Probit)
where U, (t) = fioo 1~ (s)ds is CDF of log-concave PDF 1. (s).

Kevin Miller AL in GBSSL October 5, 2021
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Multiclass Graph-Based SSL

With perturbed graph Laplacian L, and n. the number of classes,

U = argmin l(U,LTU>F+Z:€(uj,yj) =: argmin J;(U;Y),

UeRN Xn¢ jec UeRN Xn¢
for different loss functions ¢ with parameter ~:
m {(s,t) = 55 [ls — t[3, (Multiclass Gaussian Regression)

m ((s,t) =—>" tcIn(sc), (Cross-Entropy)

Kevin Miller AL in GBSSL October 5, 2021
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Probabilistic and Bayesian Perspective

Optimizer 1 can be viewed as maximum a posteriori (MAP) estimator

argmin Jy(u;y) <= argmax exp(—Je(u;y))
u u

- arginax exp (—%(u, L.ru>) exp <— Zﬂ(uj,yj)>

JjeEL

prior likelihood

= argmax P(uly)

for a posterior distribution P(uly) x exp(—J¢(u;y)).

m Different loss functions give different likelihoods

Kevin Miller AL in GBSSL October 5, 2021 20 / 51



“Gaussian Models”

Harmonic Functions (HF) Model — AKA “Laplace Learning”

Assuming hard constraints for labeling!, have conditional distribution:
-1 —1
uyly ~ N(uny, Lu,u)» uny = =Ly Lu,.cy
with ugz =y.

Gaussian Regression (GR) Model
With £(z,y) = (z — y)?/27?, then likelihood /prior/posterior is Gaussian.

P(uly) x exp (—%(u, LTu>) exp (—2; Z(uj _ yj)2>

JjeL

~N(1,C), a= iQCPTy, cCl'=L+ %PTP,
v Y

where P : RN — RI*l is projection onto labeled set £.

L Does not actually rigorously fit into Bayesian framework like others
Kevin Miller AL in GBSSL October 5, 2021 21 /51



Overview

Model Change Active Learning
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Look-Ahead & Model Retraining

Look-Ahead model with index k£ and label ys:

plus k

L ky .k .1 - N
a""Y i=argmin J"(u;y, yx) = argmin = (u, L-,u)—&—ZE(uj,yj)—l—E(uk,yk)
ueRN ueRN 2 Jec

m “hypothetical model”, with k € U and label y;
For Gaussian model, look-ahead posterior distribution’s parameters from the
current posterior distribution

m without expensive model retraining — rank-one updates

GR: athvk =4 W=t cthuw =0 —

T
¥2+Cri % kcivk

1
Y2 +Cri T h
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Model Change

Model Change: How much would labeling k € U change the classifier if we
added it to the labeled set with pseudo-label . 7

k* = argmax A(k) = argmax [[at* % —q,

keu keu

2Cai, Zhang, and Zhou, “Maximizing Expected Model Change for Active Learning in Regression”, 2013; Karzand and Nowak, “MaxiMin
Active Learning in Overparameterized Model Classes”, 2020.
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Model Change

Model Change: How much would labeling k € U change the classifier if we
added it to the labeled set with pseudo-label . 7

+k, 9k

k" = argmax A(k) = argmax |G — 12

keu kel

Similar idea to previous works?, but applied to a more general family of classifiers.

2Cai, Zhang, and Zhou, “Maximizing Expected Model Change for Active Learning in Regression”, 2013; Karzand and Nowak, “MaxiMin
Active Learning in Overparameterized Model Classes”, 2020.
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Model Change

Model Change: How much would labeling k € U change the classifier if we
added it to the labeled set with pseudo-label . 7

+k, 9k

k" = argmax A(k) = argmax |G — 12

keu keu
Similar idea to previous works?, but applied to a more general family of classifiers.
Other Acquisitions Using Look-Ahead:
m VOpt (Ji and Han, 2012): min Tr[CtH¥x]
m Error Bound (Ji and Han, 2012): min Tr[(CTF¥x)2)

m EER (Zhu et al, 2003): minimize expected error of look-ahead

All these use Gaussian models, i.e. look-ahead updates exact

2Cai, Zhang, and Zhou, “Maximizing Expected Model Change for Active Learning in Regression”, 2013; Karzand and Nowak, “MaxiMin
Active Learning in Overparameterized Model Classes”, 2020.
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Non-Gaussian Posterior?

When likelihood not Gaussian, posterior IP(uly) is non-Gaussian..

Problems:
m model classifier as mean y = Eyp [u]? or MAP estimator
4 = argmax IP(uly)?
m compute mean, u, and covariance C' = Ey.p [(u —p)(u— ,u)T] ?
(potentially expensive!)
m Look-ahead updates??

With non-Gaussian models, we lose these nice properties. What to do?

Kevin Miller AL in GBSSL October 5, 2021 25 /51



Non-Gaussian Posterior?

When likelihood not Gaussian, posterior IP(uly) is non-Gaussian..

Problems:
m model classifier as mean y = Eyp [u]? or MAP estimator
4 = argmax IP(uly)?
m compute mean, u, and covariance C' = Ey.p [(u —p)(u— ,u)T] ?
(potentially expensive!)
m Look-ahead updates??

With non-Gaussian models, we lose these nice properties. What to do?

Let’s approximate with Gaussian, and see what happens!
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Laplace Approximation

Laplace approximation is a popular technique for approximating non-Gaussian

distributions IP with a Gaussian distribution.
x~N(%,C), %=argmax P(x), C= (7V2 1n(]P(x))|x:,z)71 ,

where
m X : MAP estimator of IP

m C : Hessian matrix of the negative-log density of P, evaluated at %

0.8

0.6

04

0.2

photo credit : http://wiljohn.top/2019/04/14/PRML4-4/
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Laplace Approximation - Binary

uly ~ N (a, Cq), 0 = argmin Jo(u;y),
ueRN

and then calculate covariance of Laplace Approximation Cy

-1
A 71 5
Ca = (Vadi(izy)) ™' = (HZF’WWJ ) ,
JEL
where

ol ' 0%
F(mvy) = %($7y), F (‘T7y) = @(xﬁq)
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Approximate Look-Ahead Update - Binary

)

How to approximate look-ahead model update, a+*%* = arg min Jf’@’“?

m have Cyq (i.e. inverse Hessian evaluated at MAP estimator 1)

Kevin Miller AL in GBSSL October 5, 2021 28 / 51



Approximate Look-Ahead Update - Binary

How to approximate look-ahead model update, a+*%* = arg min Jf’@’“?
m have Cyq (i.e. inverse Hessian evaluated at MAP estimator 1)

Try one step of Newton’s method, starting at 1:

a0 = a — (VAP sy, ) (Vudi P (0 y, i)

Fax, ) A
T T (ar, 50) [Calr (o

I
:>

where )

Fla,y) = 5 (@,9), F(@,9) = o5 (n.u).
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Approximate Look-Ahead Update - Binary

How to approximate look-ahead model update, a+*%* = arg min Jf’@’“?
m have Cyq (i.e. inverse Hessian evaluated at MAP estimator 1)

Try one step of Newton’s method, starting at 1:

a0 = a — (VAP sy, ) (Vudi P (0 y, i)

Fax, ) A
T T (ar, 50) [Calr (o

I
:>

where )

Fla,y) = 5 (@,9), F(@,9) = o5 (n.u).

Simple update!

* GR: this reduces to the exact look-ahead update!
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Model Change Acquisition Function

Employ approximate update:

AGK) = 855 s ~ [ —al,
_ F (s, i) ok
L+ F'(ak, 9) [Calrr |,
F(tk, J)
== lel:
'1+F/(,ak’ Ak)[C ]k ”[ ] k”z
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Model Change Acquisition Function

Employ approximate update:

AGK) = 855 s ~ [ —al,
_ F (s, i) .
L+ F' (e, Gr) [Calkre ok )
F(Amﬁk)
== lel:

—1
Problem: Cy = <L+Z/€E u],qj)eJeT> c RVXN

Kevin Miller AL in GBSSL

October 5, 2021
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Spectral Truncation

Consider only first M < N eigenvalues and eigenvectors of graph Laplacian, L:

0=XA <X <...<Anm, VI,Vo,...,VAL.
lAT:diag(A1+72,...,)\M+72)
BV =[v vo ... VM]ERNXM

m o € R (binary), A € RM*"e (multiclass)
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Spectral Truncation

Consider only first M < N eigenvalues and eigenvectors of graph Laplacian, L:
0=X <A< < A,
A, :diag()\l +72,...,)\M+72)
BV =[vi v2 ... vl c RVxM
m o € R (binary), A € RM*"e (multiclass)
Binary: (u=Va)

1
Je(wiy) = {u Leu) + ) €(uj.5)
JjEL

(o, Ara) + ) Uef Va,y;) = Jo(asy),

JEL

Vi,Va,...,V)r.

—

N | =

Kevin Miller

AL in GBSSL
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Spectral Truncation

Consider only first M < N eigenvalues and eigenvectors of graph Laplacian, L:
0=X <A< < A,
m A :diag()\l +72,...,)\M+72)
BV =[vi v2 ... vl c RVxM
m o € R (binary), A € RM*"e (multiclass)
Binary: (u=Va)

1
Je(wiy) = {u Leu) + ) €(uj.5)
JjEL

(o, Ara) + ) Uef Va,y;) = Jo(asy),

JEL

Vi,Va,...,V)r.

—

N | —

Multiclass: (U = V A)
1 C
JU;Y) = (U, L:U)r + z;z(uf,yﬂ
je

1 ) -
= (A AA)p + D e VAY) = Ju(4Y).
JEL
Kevin Miller

AL in GBSSL
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Model Change in Spectral Truncation

Using covariance matrix (i.e. inverse Hessian) Cs = (Vijg(d;y))i1 of the

spectral truncation setup, we can apply approximate update as before:

A(k) = [[a"7 —alls ~ ||a"7 —al|,
= |V (" - a)]|
[V (a7 —a)]l,
— ||z k0K A
lao — &,
F(G.. 4 ~
- (0. vt

L+ FY(a, gie) (vF) T Cavt

where we recall that Va = u, so that
ar=e,Va=(v")"a,

where v¥ € RM is the k" row of V.
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Approximate Look-Ahead - Multiclass

Similar result for multiclass case, but a little lengthy to describe...

Kevin Miller AL in GBSSL October 5, 2021 32 /51



Approximate Look-Ahead - Multiclass

Similar result for multiclass case, but a little lengthy to describe...

A0 = A= (VATM (A4, 91) 7 (Vad b0 (4 v, 5%))

simplifies to be rank n
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Application: Hyperspectral Imagery (HSI)

Wavelength

Pixel Classification

m Seek to classify the pixels into
classes (e.g. water, dirt, grass,

metal, etc)

m Noisy measurements, corrupted by

weather and atmospheric effects

UNERE

Figure 1: image credit: Christophe, Mailhes, & Duhamel (2009)
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Application: Hyperspectral Imagery (HSI)

Wavelength

Pixel Classification

m Seek to classify the pixels into
classes (e.g. water, dirt, grass,

metal, etc)

m Noisy measurements, corrupted by

weather and atmospheric effects

UNERE

Figure 1: image credit: Christophe, Mailhes, & Duhamel (2009)

Apply active learning to incorporate human-in-the-loop to improve the accuracy

of graph-based semi-supervised classification of pixels.

Kevin Miller AL in GBSSL October 5, 2021
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Multiclass Experiments - HSI

Graph Construction:
m 15 nearest neighbors, cosine similarity

m M = 50 eigenvalues

Experiments:

m Initially label 2 per class, select 500 points
Figure 2: Salinas-A nHaty per poin

Acquisition Functions:
® Random
m Uncertainty

m VOpt (Ji and Han, 2012)

m 3-Opt (Ma et al, 2013)

Model Change

Figure 3: Urban
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Results - Multiclass

Multiclass GR Results:

1.00

*  MCMGR
0.05] < RAND-MGR
0.95 x  SOPT-MGR
2> 208 3‘” % UNC-MGR
I e o +
2 0.90 MCMGR ] MC-MGR H VOPT-MGR o uess
< < RAND-MGR g < RANDMGR | 20.85
x  SOPT-MGR 0.7 x  SOPT-MGR
0.85 UNCMGR UNC-MGR 0.80
+  VOPT-MGR +  VOPT-MGR
0 100 200 300 400 500 ) 100 200 300 400 500 0 100 200 300 400 500
Number of labeled points, |£| Number of labeled points, |£| Number of labeled points, |L£|
@ MNIST ) Salinas A (9 Urban
Cross-Entropy Results:
1 0. 1
08
z Z08 08
L0.6 o I
5 5 5
3 3 3
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<4 < <06
07 J v MCCE v MCCE
< RANDCE < RANDCE
0.2 = UNCCE « UNCCE
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500 0 100 200 300 400 500 0 100 200 300 400 500

0 100 200 300 400
Number of labeled points, |£|

@ MNIST

Kevin Miller
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(e Salinas A

in GBSSL

Number of labeled points, |£|

® Urban




Overview

Further Insights and Applications
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Explore vs Exploit Demo

Figure 4: 2 x 2 Binary Checkerboard

2000 total points, 2 initially labeled points

m Select 80 points sequentially via Uncertainty, Model Change, and VOpt.
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Comparison of Query Points

Uncertainty Model Change VOpt

Kevin Miller AL in GBSSL October 5, 2021 38 /51



Accuracy (%)

Kevin Miller

Accuracy Comparison

100
a0
m_
?‘0_
m_
—w— Lincertainty
+— VOpt
50 4 —e— MC
2™ 33| 4 0 & 70 &

Number of labeled points
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MCVOPT

Laplace Learning

Gaussian Regression

(HF)
— —1
c Ly (L+=P"P)
VOt . e 1O
Uncertainty [tk — O] [t — Gl
Model Change (MC) S [elA e [N
Kevin Miller AL in GBSSL October 5, 2021

40 / 51



MCVOPT

Laplace Learning

Gaussian Regression

(HF)
_ —1
c Lizi (L+5:P7P)
VOpt Ckk - +ckk IC-.kll3
Uncertainty ‘ﬁk — gk| |ﬂk — @k|
Model Change (MC) '“’gkf’“‘ IC: k|2 :Lz’fé/:k‘ 1C: k2
1 2
MCVOPT: A(k) = |tk — 9| ————||C:
(k) = |tk — G| 1O 1C:kll2
“uncertainty” “kernel info”
Kevin Miller AL in GBSSL October 5, 2021
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\iaviela)
Laplace Learning
Gaussian Regression
(HF)
c Lk (L+%PTP)
VOpt ckk ‘ 5 _;,_ckk ”C k”2
Uncertainty ‘ﬁk — gk| |ﬂk — @k|

Model Change (MC) '“’gkf’“‘ IC: k|2 :Lz’fé/:k‘ IC: k|2

1 2

MCVOPT: k) =|ur — 9| ———||C:
AR) = Tk = v Gl

“uncertainty” “kernel info”

Exploitation + Exploration
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Application: SAR Data

UCLA REUCAM 2021 Project — joint work with Dr. Jeffrey Calder (UMN)
m NGA NURI Grant #HM04762110003, (Dr. Andrea Bertozzi, Pl)

B Undergraduates: Xoaquim Baca (Harvey Mudd), Jack Mauro (LMU), Jason
Setiadi (UMN), Zhan Shi (UCLA)

MSTAR Dataset

m Synthetic Aperture Radar (SAR)

m Automatic Target Recognition
(ATR)

m 6,784 images of size 88 x 88

Fig. 2 MSTAR database. (a) and (b) Visible light images for BMP2, BTR70, T72, BTR60, 251,
BRDM2, D7, T62, ZIL131, and ZSU23/4. (c) and (d) Coresponding SAR images for 10 targets
measured at azimuth angle of 45 deg,

Figure 5: image credit: Perumal, Vasuki (2013)
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SAR Data Pipeline

JR Wy |

Lcheled Datea

Couf.di
+ Graph Les./.nj

CNN VAE . C oustract  Similaridy
Raw SAR g A

Deatn TV‘A'm}u]

Figure 6: Unsupervised CNNVAE Representation Learning
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SAR Data Pipeline

Lcheled Datea

Conf.di
+ Graph Les./.:nj

CNN VAE . C oustract  Similaridy
Ruaws SAR A ing AN

Deatn TV‘A'm}uJ

Figure 6: Unsupervised CNNVAE Representation Learning

Raw SAK Data CAN Trsining
w/ Labeled Scbset (Supervised)

Figure 7: Supervised CNN Representation Learning
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Initial Results

100
90
= CNN: 5%, 10%, 15%, ... * 80
training data, test various ML >
algorithms g 70
8 —a— CNNVAE & Laplace
m “Upper bound” for < 60 —e— CNN & Laplace
- . —— CNN & NN
capability of unsupervised —=— CNN &RF
representations? 50 —*— CNN & SVM
—»— CNN
= CNN-VAE : all training data, 10'00 20'00 30'00
but no label information Number of labels

Figure 8: Performance of CNN vs CNNVAE

representations with various ML algorithms

Kevin Miller AL in GBSSL October 5, 2021 43 /51



Active Learning Model

SSL Model: Laplace Learning

Kevin Miller AL in GBSSL October 5, 2021 44 /51



Active Learning Model

SSL Model: Laplace Learning

Active Learning Model for LL:
m Kernel: K := L™ ¢ RV*V

. -1
m Covariance: C' = Lu,u
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Active Learning Model

SSL Model: Laplace Learning

Active Learning Model for LL:
m Kernel: K := L™ ¢ RV*V

. . _r—1 _ —1
m Covariance: C' = LZ/{,M = Kz,{yz,[ - KUJ:KL,LKE,U

Kevin Miller AL in GBSSL October 5, 2021 44 /51



Active Learning Model

SSL Model: Laplace Learning

Active Learning Model for LL:
m Kernel: K := L™ ¢ RV*V

. . _r—1 _ —1
m Covariance: C' = LZ/{,M = Kz,{yz,[ — KL{,EKL,LKE,Z/I

K;lc not always invertible when using spectral truncation...

Kevin Miller AL in GBSSL

unstable

October 5, 2021
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Active Learning Model

SSL Model: Laplace Learning

Active Learning Model for LL:
m Kernel: K := L™ ¢ RV*V

m Covariance: C = L;{}u = Kz,{yz,[ — KZ/{,EKZ}LKE,Z/I
K;lc not always invertible when using spectral truncation... unstable
Using GR model’s covariance solves this instability issue!

-1
1 -1

invertible, even in sp. trunc.

(Note Laplace Learning is v — 0 limit of GR)

Kevin Miller AL in GBSSL October 5, 2021
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MSTAR Results

With graph built from CNNVAE representations and I initially labeled point per

class, select 500 active learning query points sequentially.
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MSTAR Results

With graph built from CNNVAE representations and I initially labeled point per

class, select 500 active learning query points sequentially.

100
_ Results:
8 80 : -
< Achieve 99.7% accuracy within
o . I
g 60 Uncertainty 400 queries!
v
g —— Model Change (MC) m Best: Uncertainty

40 —e— VOpt

=~ MCVOPT
Previous slide max'd out at

0 100 200 300 400 500
Number of Labels 97.7% after 3K labeled points

Figure 9: MSTAR Active Learning Results

Kevin Miller AL in GBSSL October 5, 2021 45 / 51



MSTAR Results Discussion

Uncertainty usually characterized as exploitative, suboptimal.. Why did it

perform so well?

Kevin Miller AL in GBSSL October 5, 2021 46 / 51



MSTAR Results Discussion

Uncertainty usually characterized as exploitative, suboptimal.. Why did it

perform so well?

t-SNE Embedding Visualization B A A
17‘*.-"-\B ‘§ !"h i
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MSTAR Results Discussion

Uncertainty usually characterized as exploitative, suboptimal.. Why did it

perform so well?

t-SNE Embedding Visualization
m Colored according to ground-truth classes

m Suggest natural clustering structure KA

Laplace Learning Degeneracy

m “Spiky” behavior in low-label rates (Calder et al
2020)

m “Not confident” in unexplored clusters

m Encourages exploration!

photo credit: Calder et al, 2020
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Some Takeaways

Need to Balance:

So
O Model “Confidence”
®s°
S

Conservative Aggressive

Acquisition Function Design

N .

Exploration Exploitation

1

ol

Problem: How to balance to get proper exploration vs exploitation tradeoff?
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Future Directions

m Exploration vs Exploitation

m Mathematical definition for exploration?
When to “flip switch"?
Acquisition functions that naturally switch? (provably?)

Ad-hoc combinations
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Future Directions

m Exploration vs Exploitation

m Mathematical definition for exploration?

m When to “flip switch"?

m Acquisition functions that naturally switch? (provably?)
[

Ad-hoc combinations
m Accuracy curves are the wrong metric for comparison, | believe
m Dataset-dependent quantity that captures exploration behavior?

m Batch Learning — Is there a way that is efficient to select multiple query
points at a time?

m Coresets... but these lack human-in-the-loop
m Submodular functions (VOPT)
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Misc Image References

B https://hocview.com/fitness-tracker-that-does-not-require-a-smartphone-or-computer/

B https://www.kenhub.com/en/library/anatomy/normal- chest-x- ray

B https://edu.gcfglobal.org/en/gmail/introduction-to-gmail/1/

B https://www.cs.toronto.edu/~kriz/cifar.html
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