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Motivation - Semi Supervised Learning (SSL)

Given dataset that we know the classification (labeling) of only
some of the datapoints.

Can we infer the labeling of the rest of the unlabeled
datapoints?
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Setup – Semi-Supervised Learning (SSL)

Given X = {x1, x2, · · · , xN} ⊂ Rd (unlabeled data), with indexing
set Z = {1, 2, . . . ,N}. Assume every point in Z belongs to one of
M classes

That is, assume there exists function ` : Z 7→ {e1, · · · , eM}
(ej ∈ RM are standard basis)

Let Z ′ ⊆ Z be subset J ≤ N nodes, with Y : Z ′ 7→ {e1, · · · , eM}
the noisily observed labels of the points in Z ′.

refer to Y as labeled data

Semi-Supervised Learning (SSL) Problem:

Can we “recover” labeling ` from X ,Y ,Z ,Z ′?
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Setup – Semi-Supervised Regression

Cast SSL problem as inverse problem to infer a “ground-truth”
latent variable U† ∈ RM×N under regression model:

Y = U†HT + γη, η ∈ RM×J , ηmj ∼ N (0, 1)

where H ∈ RJ×N is matrix obtained by removing Z − Z ′ rows of
identity, IN .

Semi-Supervised Regression (SSR) Problem:

Can we infer ground-truth U† from X ,Y ,Z ,Z ′?
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Setup – BIP Semi-Supervised Regression

Previous problem is still ill-posed, so we regularize with prior µ0 on
U†. Obtain a Bayesian Inverse Problem (BIP) for our SSR problem:

BIP Semi-Supervised Regression Problem :

Given X ,Y ,Z ,Z ′ and prior measure µ0 on U, we identify
posterior probability measure µY via Radon-Nikodym
derivative

dµY

dµ0
(U) ∝ exp

(
− 1

γ2
‖UHT − Y ‖2

F

)
,

per our regression model.

Our prior will capture unlabeled data’s inherent geometry via
similarity graph and associated graph Laplacian matrix.
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Similarity Graph

Assume our data in X can be represented by similarity graph
G (Z ,W ), where

W : self-adjoint matrix, with wij ≥ 0

wij = s(xi , xj) : “similarity kernel”

Symmetric Graph Laplacian Matrix

L = D−p(D −W )D−p, p ∈ R

where D = diag(di ), di =
∑

j∈Z wij is degree matrix.

p = 0→ unnormalized Graph Laplacian matrix

p = 1/2→ normalized Graph Laplacian matrix
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Gaussian Prior measure

With G (Z ,W ) and L, we can define a covariance operator:

Cτ = τ2α
(
L + τ2IN

)−α
Well known that L ≥ 0, so then Cτ > 0 for α, τ2 > 0.

Gaussian Prior measure:

µ0(dU) ∼ N (0, IM ⊗ Cτ )

∝
M∏
`=1

exp

(
−1

2
〈uT` , τ−2α

(
L + τ2IN

)α
uT` 〉

)
dU
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Posterior Gaussian Measure

Can now identify posterior measure from our regression model
(Gaussian likelihood) and Gaussian prior:

µY (dU) ∝ exp

−1

2

〈UT ,C−1
τ UT 〉F︸ ︷︷ ︸

prior

+
1

γ2
‖UHT − Y ‖2

F︸ ︷︷ ︸
likelihood


 dU

Gaussian likelihood and Gaussian prior =⇒ posterior µY Gaussian

µY ∼ N (U∗,C ∗)

where C ∗ =
(
C−1
τ + 1

γ2H
TH
)−1

, U∗ = 1
γ2Y

THC ∗
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Bayesian Posterior Consistency

Given a “ground-truth” U†, from which Y is observed, we want to
show under what conditions the posterior µY (dU) “contracts”
onto U† in the limit of model parameters.

Still Need:

How to measure posterior contraction?

Restrictions on data geometry (i.e. similarity graph
properties)?

Valid choices of possible U† for this consistency?
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Posterior Contraction Measure

Define the following measure of posterior contraction

I := EY |U†EU|Y

∥∥∥U − U†
∥∥∥2

F

inner expectation → w.r.t. the posterior measure µY (dU)

outer expectation → w.r.t. the measure of Y conditioned on
U† following SSR model

.

Goal: to show that I → 0 with the noise standard deviation γ and
other the prior hyperparameters such as τ, α for certain weakly
connected graphs.
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Disconnected Graph

(a) W0 ∈ RN×N is block diagonal

W0 = diag(W̃1, W̃2, · · · , W̃K ),

with W̃k ∈ RNk×Nk denoting the weight matrices of the
subgraphs Gk .

(b) L̃k graph Laplacian matrices of Gk , i.e.,

L̃k := D̃−pk (D̃k − W̃k)D̃−pk

There exists uniform θ > 0 so that the submatrices L̃k have a
uniform spectral gap, i.e.,

〈x, L̃kx〉 ≥ θ〈x, x〉, (1)

for all vectors x ∈ RNk and x⊥D̃p
k 1.
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Disconnected to Weakly Connected Graph

Now, we perturb this disconnected graph G0 to obtain Gε(Z ,Wε) :

Wε = W0 +
∞∑
h=1

εhWh,

Wh are self-adjoint and {‖Wh‖2}∞h=1 ∈ `∞.

Let w
(0)
ij and w

(h)
ij denote the entries of W0 and Wh

respectively. Thenw
(h)
ij ≥ 0, if w

(0)
ij = 0 for i , j ∈ Z , i 6= j .

w
(h)
ii = 0.
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Disconnected to Weakly Connected Graph

Therefore, we have

Lε := D−pε (Dε −Wε)D
−p
ε , and Cτ,ε := τ2α(Lε + τ2IN)−α

where Dε corresponds to the diagonal degree matrix of Wε.

Remind Goal: Given a weakly connected graph representation of
X , can we recover a “ground-truth” function U† with some
observations Y from U†?

Need some restrictions on U†!
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Assumptions about Ground-Truth U†

Let (u†`)
T for ` = 1, . . . ,M denote the rows of U†. Then

u†` ∈ span{χ̄1, . . . , χ̄K},

where the weighted set functions

χ̄k :=
Dp

01k∣∣Dp
01k

∣∣ ,
with 1k ∈ RN denoting indicator of the clusters Zk (subgraph G̃k).

And... at least one label is observed in each cluster Zk

|Z ′ ∩ Zk | > 0 ∀k = 1, . . . ,K .
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Main Result

All together – want to show that:

I(γ, α, τ, ε) = EY |U†EU|Y

∥∥∥U − U†
∥∥∥2

F
→ 0

in the limit of model parameters γ, τ, ε.
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Main Result – ε = 0 Case

Theorem (ε = 0 Case)

Suppose have G0, U
†, and Z ′ that satisfy all Assumptions

presented. Then there exists a constant Ξ > 0, such that
∀(τ, α, γ) ∈ R3

+ it holds that

I(γ, α, τ) ≤ Ξ max
{
γ2, τ2α

}(
1 + max

{
γ2, τ2α

} M∑
m=1

|u†m|2
)
.

Note if we fix α and set τ = γ1/α, we can simplify

I(γ, α, τ) ≤ Ξγ2
(

1 + γ2‖U†‖2
F

)
→ 0, as γ → 0
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Main Result

Main Theorem

Suppose have G0, U
†, Z ′, and Gε that satisfy all Assumptions

presented. Then there exist constants ε0 ∈ (0, 1), and Ξ,Ξ1 > 0,
such that ∀(ε, τ, α, γ) ∈ (0, ε0)× R3

+ it holds that

I(γ, α, τ, ε) ≤ Ξ max

{
γ2,

(
τ2

1− Ξ1ε/τ2

)α}
×

(
1 + A(τ, ε) max

{
γ2,

(
τ2

1− Ξ1ε/τ2

)α} M∑
m=1

|u†m|2
)
.

where A(ε, τ) =
(
ε+ ε

τ2α +
(
1 + ε

τ2

)α)2
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Main Result – Simplified

Note if we fix α, set τ = γ1/α, and for β ≥ 2 let ε = τβ = γβ/α,
we can simplify the bound in Main Theorem to be:

I(γ, α, τ, ε) ≤ ΞKγ2

1 + K ′γ2

[
γβ/α +

γβ/α

γ2
+

(
1 +

γβ/α

γ1/α

)α]2


≤ Ξ′

γ2 + γ4

[
γβ/α +

γβ/α

γ2
+ 1

]2


≤ Ξ̃
(
γ2 + γ2β/α

)
.

where K ,K ′,Ξ′, Ξ̃ are constants that are derived from Ξ,Ξ1 from
the Theorem and bounds for the other terms.
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Numerical Example

Synthetic Data:
Disconnected G0(Z ,W0) and ground-truth U† created from:

3 clusters of 100 nodes each

each cluster is different class, Erdos-Renyi graph (p = 0.8)

5 nodes from each class labeled

Then, weakly-connected Gε obtained by ε perturbations of G0.

From theory, see desired relationship in the scaling τ, γ, and ε. We
set γ = τα for bounds.

3 regimes:

ε = τ 2 = O(τ 2)(β = 2)
ε = τ 3 = o(τ 2)(β = 3)
ε = 0(≈ β →∞)
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Numerical Example

Calculation of I(γ, τ, ε, α) found by 3 different terms derived in
proof:

I(γ, α, τ, ε) = MTr(C ∗ε )+
M

γ2
Tr(C ∗ε BC

∗
ε )+

M∑
m=1

∣∣∣∣ 1

γ2
C ∗ε Bu

†
m − u†m

∣∣∣∣2 .
where

C ∗ε : posterior measure’s covariance matrix

B = HTH ∈ RN×N : projection onto labeled nodes
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Numerical Example – Convergence

Bias and Tr(C ∗ε ) convergence plots for β = 2, (ε = τ2)
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Numerical Example – Convergence Rates of 3 terms
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Numerical Example

Bound seen for varying levels of β ≥ 2:
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Interpretations and Future Directions

Theoretical Bounds seem tight in testing!

Application Takeaway:

Scaling needed in theory → need τ not to be too small
compared to ε but also non-zero with relationship to γ

Future Directions:

Apply to other likelihood choices

Regression not “natural” for underlying task of classification
Probit likelihood

Try on real-world datasets – how to estimate ε?
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