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Motivation

Graphs (a.k.a. Networks) are collections of nodes (vertices) and
edges (connections) that can be used to model relationships
between objects.

Social Networks (Facebook, Twitter, LinkedIn, ego-nets)

Protein-protein interaction networks

Computer Cluster Networks

Telecommunication Networks

Buying/Selling Networks (Amazon, Ebay, etc.)
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Motivation

Problems:

Community Detection, Clustering, Partitioning

Centrality Measures

Graph Drawing/Visualization

Diffusion Patterns

We look at Clustering and Community Detection today, via
Spectral Clustering

Kevin Miller Spectral Clustering in Directed Networks



Graph Basics

Graph

Graph G (V ,E ) is a set of n nodes (vertices) V = {1, 2, . . . , n},
with pairs of nodes connected by edges (links) in the set E .

Adjacency Matrix

Ai ,j =

{
1 if there exists an edge in E from node i to node j ,

0 otherwise.

Note we can replace 1 by weight we for the weight of edge
e = (i , j).
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Graph Basics (cont.)

Degree Matrix

D = diag(d1, d2, . . . , dn)

where di = deg(i)

Graph Laplacian

Given the adjacency matrix A and degree matrix D,

L = D − A

Other Graph Laplacians:

Lrw = I − D−1A

Lsym = I − D−1/2AD−1/2
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Directed vs Undirected

The edges in a graph represent relationships or flow of information.
Not all relationships in the world are mutual, or bidirectional.

Undirected Graph

A graph G is undirected if all of the connections are bidirectional.
This is equivalent to A and L being symmetric.

Otherwise, the graph is directed (digraph), with A and L not
symmetric.
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Undirected Example

Figure: Undirected Adjacency Matrix and Corresponding Graph
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Directed Example

Figure: Directed Adjacency Matrix and Corresponding Graph
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Spectral Graph Theory

Spectral Graph Theory : The study of graphs through the lens of
the graph’s spectral properties (i.e., eigenvalues and eigenvectors
of L).
Focus in the field are undirected graphs because of nice spectral
properties:

L has n non-negative, real-valued eigenvalues
0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

L is symmetric, positive definite

Smallest eigenvalue of L is 0 with corresponding e-vector 1

With digraphs, we get complex eigenvalues and eigenvectors!
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Spectral Clustering Overview

(Main idea) Separate nodes into different groups according to
their edge structure

(Reformulated) We desire to partition the graph such that the
weight of edges between different groups is “minimized” and
that the weight of edges within groups is “maximized”

Kevin Miller Spectral Clustering in Directed Networks



k = 2 Clusters Visual

Figure: What Partition to Choose?

Visual from Chis Ding, A Tutorial on Spectral Clustering (2007).
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Spectral Clustering Algorithm

Spectral Clustering Generalized

Inputs: k (desired # clusters), A (adjacency/similarity matrix of
given graph)
Procedure:

Compute the desired Laplacian, L.

Compute the first k eigenvectors x1, . . . , xk of L.

Let X = [x1x2 . . . xk ]

For i = 1, . . . , n, let yi ∈ Rk with the k-means clustering
algorithm into clusters C1, . . . ,Ck .

Output: Clusters C1, . . . ,Ck
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Success of Spectral Clustering

Unsupervised Machine Learning

Use Spectral Clustering to cluster data points

Reveals important relationships in data

Figure: Half Moon Data Set and Concentric Circles

Visuals from Python Sklearn Website (Accessed March, 2016).
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Problems in Spectral Clustering

No prior knowledge of community structure...
How to choose k communities with which to cluster??

Figure: Map of the Internet
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Spectral Clustering on Digraphs

With directed graphs, eigenspaces in complex subspaces make
clustering difficult to justify rigorously. Hence the focus on
undirected graphs in the field.

Difficulties:

Lose simple ordering of eigenvalues

Eigenspace coupling

But... why not try it?

Kevin Miller Spectral Clustering in Directed Networks



Example - Undirected 3-Community

Figure: Adjacency Matrix and Spectral Embedding
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Example - Directed 3-Community

The first 3 eigenvalues (and corresponding eigenvectors) were real!

Figure: Adjacency Matrix and Spectral Embedding

Kevin Miller Spectral Clustering in Directed Networks



Empirical Findings of Spectral Clustering in Digraphs

Main Finding

The number of smallest real eigenvalues of a digraph’s Laplacian
matrix is an indicator of the number of latent communities. That
is, with eigenvalues ordered by magnitude:

0 = |λ1| ≤ |λ2| ≤ . . . ≤ |λn|

the largest value k for which λ1, λ2, . . . , λk ∈ R indicates the
latent number of communities in the digraph.

Implications:

Eigenvectors corresponding to real eigenvalues are still good
for clustering

Can determine number of clusters to look for BEFORE
spectral embedding is done!
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