Link Prediction in Undirected Networks A Probabilistic Foundation

Kevin Miller Supervised by: Dr. Jeffrey Humpherys

March 4, 2017

Motivation

Graphs (Networks) are collections of nodes (vertices) and edges (connections) that can be used to model relationships.

- Social Networks (Facebook, Twitter, LinkedIn, ego-nets)
- Protein-protein interaction networks
- Telecommunication Networks
- Buying/Selling Networks (Amazon, Ebay, etc.)

Problems:

- Community Detection, Clustering, Partitioning
- Centrality Measures
- Link Prediction
- Graph Drawing/Visualization
- Diffusion Analysis

We look at Link Prediction today, using an Effective Resistance based metric

Graph

Graph G(V, E) is a set of n nodes (vertices) $V = \{1, 2, ..., n\}$, with pairs of nodes connected by edges (links) in the set E.

Adjacency Matrix

$$A_{ij} = \begin{cases} 1 & \text{if there exists an edge in } E \text{ from node } i \text{ to node } j, \\ 0 & \text{otherwise.} \end{cases}$$

Note we can replace 1 by weight w_e for the weight of edge e = (i, j).

Degree Matrix

$$D = diag(d_1, d_2, \ldots, d_n)$$

where $d_i = deg(i) = \#$ of nodes that node *i* connects to.

Graph Laplacian

Given the adjacency matrix A and degree matrix D,

$$L = D - A$$

Other Graph Laplacians:

•
$$L_{rw} = I - D^{-1}A$$

•
$$L_{sym} = I - D^{-1/2} A D^{-1/2}$$

 $\mathsf{Edges} \implies \mathsf{relationships} \mathsf{ or flow of information}.$

Not all relationships in the world are mutual, or bidirectional.

Undirected Graph

A graph G is **undirected** if all of the connections are bidirectional. This is equivalent to A and L being symmetric.

Otherwise, the graph is **directed** (digraph), with A and L not symmetric.

Note: $\lambda = 0 \in \sigma(L)$, with eigenvector $\boldsymbol{e} = \mathbb{1}$.

Undirected Example

Figure: Undirected Adjacency Matrix and Corresponding Graph

We focus only on *undirected* networks, so we have symmetry.

Given an observed, undirected network G(V, E), what is the most likely *unobserved* edge $e \notin E$ that should be in E, or is likely to be in E in the future?

Problems

- ill-posed problem
- how to measure quality of link prediction?
- complex nature of networks, underlying dynamics

Effective Resistances

Effective Resistance

The effective resistance between nodes $i, j \in V$ is the energy dissipation when a unit current is injected at node i and removed at node j. It can be calculated as the potential difference

$$Reff(i,j) = v(i) - v(j)$$

photo credit: Nikhil Srivastava, Graph Sparsification I: Sparsification via Effective Resistances

< A > < 3

Model our network as an electrical resistor network: It can be shown using Kirchoff and Ohm's laws that Reff(i,j) can be found via:

$$Reff(i,j) = (\boldsymbol{e}_i - \boldsymbol{e}_j)^T L^{\dagger}(\boldsymbol{e}_i - \boldsymbol{e}_j) = L^{\dagger}_{ii} - 2L^{\dagger}_{ij} + L^{\dagger}_{jj}$$

- L[†] : Moore-Penrose Pseudoinverse of the Graph Laplacian (symmetric)
- e_i, e_j : i^{th} and j^{th} standard \mathbb{R}^n basis vectors

Sparsification via Effective Resistances, Daniel Spielman and Nikhil Srivastava

Spielman, Srivastava (2009)

Sparsify dense graphs via random sampling of edges based on the effective resistances across edges.

dense
$$G(V, E) \implies$$
 sparse $H(V, E_s)$
 $Reff_G()$

Sparsified graph H retains certain "spectral" properties of G:

- eigenvalues and eigenvectors are "close"
- graph cuts
- clustering

If L_G , L_H are the corresponding Graph Laplacians of G and H, respectively:

$$(1-\epsilon) \mathbf{x}^{\mathsf{T}} L_{\mathsf{G}} \mathbf{x} \leq \mathbf{x}^{\mathsf{T}} L_{\mathsf{H}} \mathbf{x} \leq (1+\epsilon) \mathbf{x}^{\mathsf{T}} L_{\mathsf{G}} \mathbf{x}$$

 $\forall \mathbf{x} \in \mathbb{R}^n$ with high probability.

Sparsification:

dense
$$G(V, E) \implies$$
 sparse $H(V, E_s)$

Link Prediction:

"sparse"
$$H(V, E_s) \implies$$
 "dense" $G(V, E)$

With $e = (i, j) \in E$, we have that

$$Reff(e): E \to [0,\infty)$$

defines a metric on the edge set, E.

- Effective Resistances \implies "distance"
- more short paths \implies lower Reff() \implies "closer" electrically

With $e = (i, j) \in E$, we have that

$$Reff(e): E \to [0,\infty)$$

defines a metric on the edge set, E.

- Effective Resistances \implies "distance"
- more short paths \implies lower Reff() \implies "closer" electrically

Extend this metric to all pairs of nodes.

Link Prediction Routine

Given an observed, undirected graph G(V, E), we predict the link $\hat{e} \notin E$ s.t.

$$\hat{e} = \operatorname*{argmin}_{e \notin E} \operatorname{Reff}(e) = \operatorname*{argmin}_{(i,j) \notin E} L^{\dagger}_{ii} - 2L^{\dagger}_{ij} + L^{\dagger}_{jj}$$

where L^{\dagger} is the Moore-Penrose Pseudoinverse of the Graph Laplacian.

Quick Example

Figure: Zachary's Karate Club Network

Questions:

- Empirically good, but justified?
- In what sense is this predicted link, "the best" or "most likely"?
- Different metrics, different results? Which is best?
- Computationally efficient?

We show that Link Prediction via Effective Resistances yields the "most likely" link in a probabilistic sense, when we view the observed graph as a draw from the probability distribution across edges as defined for Sparsification via Effective Resistances.

Consider an observed, undirected graph $G_o(V, E_o)$ with edge weights $\{w_e\}_{e \in E_o}$ then we define:

- plus-one graph = a graph $G_1(V, E_1)$ s.t. $E_1 = E_o \cup \{e_1\}$, with $(e_1 \notin E_o)$
- $\mathbb{G} = \{G_1(V, E_1) : G_1 \text{ is a plus-one graph of } G_o(V, E_o)\}$
- $\mathbb{E} = \{E_1 : E_1 \text{ is a plus-one edge set of } E_o\}$
- $Reff_{E_o}(e) =$ effective resistance of the edge e in the edge set E_o

Theorem

Given an undirected, observed graph $G_o(V, E_o)$ and a prior on all edge weights $\{w_e\}_{e \notin E_o}$, the edge $\hat{e} \notin E_o$ s.t.

 $\hat{e} = \operatorname*{argmin}_{e
ot \in E_o} w_e \operatorname{Reff}_{E_o}(e)$

then $\hat{G}(V, E_o \cup \{\hat{e}\})$ is most-likely plus-one graph to have produced $G_o(V, E_o)$.

- D. Spielman and N. Srivastava. *Graph Sparsification by Effective Resistances*, 2008. http://arxiv.org/abs/0803.0929. Accessed online
- N. Srivastava. Graph Sparsification I: Sparsification via Effective Resistances, 2014. Lecture accessed September, 2015 at https://simons.berkeley.edu/talks/nikhil-srivastava-2014-08-26a
- M.E.J. Newman. The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, January, 2001. 10.1073/pnas.021544898
- R. Lichtenwalter, J. Lussier, and N. Chawla. New Perspectives and Methods in Link Prediction, 2010. http://doi.acm.org/10.1145/1835804.1835837
- D. Spielman. *Spectral Graph Theory: Effective Resistance*. Lecture 8, Sep 24, 2012. http://www.cs.yale.edu/homes/spielman/561/2012/lect08-12.pdf

- 4 同 6 4 日 6 4 日 6