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Motivation

Graphs (Networks) are collections of nodes (vertices) and edges
(connections) that can be used to model relationships.

Social Networks (Facebook, Twitter, LinkedIn, ego-nets)

Protein-protein interaction networks

Telecommunication Networks

Buying/Selling Networks (Amazon, Ebay, etc.)

Kevin Miller Link Prediction in Undirected Networks



Motivation

Problems:

Community Detection, Clustering, Partitioning

Centrality Measures

Link Prediction

Graph Drawing/Visualization

Diffusion Analysis

We look at Link Prediction today, using an Effective Resistance
based metric
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Graph Basics

Graph

Graph G (V ,E ) is a set of n nodes (vertices) V = {1, 2, . . . , n},
with pairs of nodes connected by edges (links) in the set E .

Adjacency Matrix

Aij =

{
1 if there exists an edge in E from node i to node j ,

0 otherwise.

Note we can replace 1 by weight we for the weight of edge
e = (i , j).
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Graph Basics (cont.)

Degree Matrix

D = diag(d1, d2, . . . , dn)

where di = deg(i) = # of nodes that node i connects to.

Graph Laplacian

Given the adjacency matrix A and degree matrix D,

L = D − A

Other Graph Laplacians:

Lrw = I − D−1A

Lsym = I − D−1/2AD−1/2
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Directed vs Undirected

Edges =⇒ relationships or flow of information.

Not all relationships in the world are mutual, or bidirectional.

Undirected Graph

A graph G is undirected if all of the connections are bidirectional.
This is equivalent to A and L being symmetric.

Otherwise, the graph is directed (digraph), with A and L not
symmetric.

Note: λ = 0 ∈ σ(L), with eigenvector e = 1.
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Undirected Example

Figure: Undirected Adjacency Matrix and Corresponding Graph
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Focus Today : Undirected Networks

We focus only on undirected networks, so we have symmetry.
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Link Prediction Problem

Given an observed, undirected network G (V ,E ), what is the most
likely unobserved edge e 6∈ E that should be in E , or is likely to be
in E in the future?

Problems

ill-posed problem

how to measure quality of link prediction?

complex nature of networks, underlying dynamics
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Effective Resistances

Effective Resistance

The effective resistance between nodes i , j ∈ V is the energy
dissipation when a unit current is injected at node i and removed
at node j . It can be calculated as the potential difference

Reff (i , j) = v(i)− v(j)

photo credit: Nikhil Srivastava, Graph Sparsification I: Sparsification via Effective Resistances
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Effective Resistances

Model our network as an electrical resistor network:
It can be shown using Kirchoff and Ohm’s laws that Reff (i , j) can
be found via:

Reff (i , j) = (ei − ej)TL†(ei − ej) = L†ii − 2L†ij + L†jj

L† : Moore-Penrose Pseudoinverse of the Graph Laplacian
(symmetric)

ei , ej : i th and j th standard Rn basis vectors
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Sparsification via Effective Resistances, Daniel Spielman
and Nikhil Srivastava

Spielman, Srivastava (2009)

Sparsify dense graphs via random sampling of edges based on the
effective resistances across edges.

dense G (V ,E ) =⇒ sparse H(V ,Es)
ReffG ()
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Properties of Sparsification via Effective Resistances

Sparsified graph H retains certain “spectral” properties of G :

eigenvalues and eigenvectors are “close”

graph cuts

clustering

If LG , LH are the corresponding Graph Laplacians of G and H,
respectively:

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx

∀x ∈ Rn with high probability.
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Connecting Sparsification and Link Prediction

Sparsification:

dense G (V ,E ) =⇒ sparse H(V ,Es)

Link Prediction:

“sparse” H(V ,Es) =⇒ “dense” G (V ,E )
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Link Prediction via Effective Resistances

With e = (i , j) ∈ E , we have that

Reff (e) : E → [0,∞)

defines a metric on the edge set, E .

Effective Resistances =⇒ “distance”

more short paths =⇒ lower Reff() =⇒ “closer” electrically
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Link Prediction via Effective Resistances

With e = (i , j) ∈ E , we have that

Reff (e) : E → [0,∞)

defines a metric on the edge set, E .

Effective Resistances =⇒ “distance”

more short paths =⇒ lower Reff() =⇒ “closer” electrically

Extend this metric to all pairs of nodes.
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Link Prediction via Effective Resistances

Link Prediction Routine

Given an observed, undirected graph G (V ,E ), we predict the link
ê 6∈ E s.t.

ê = argmin
e 6∈E

Reff (e) = argmin
(i ,j)6∈E

L†ii − 2L†ij + L†jj

where L† is the Moore-Penrose Pseudoinverse of the Graph
Laplacian.
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Quick Example

Figure: Zachary’s Karate Club Network
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Justification for this Method?

Questions:

Empirically good, but justified?

In what sense is this predicted link, “the best” or “most
likely”?

Different metrics, different results? Which is best?

Computationally efficient?
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Justification for this Method?

We show that Link Prediction via Effective Resistances yields the
“most likely” link in a probabilistic sense, when we view the
observed graph as a draw from the probability distribution across
edges as defined for Sparsification via Effective Resistances.
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Formalization of Link Prediction

Consider an observed, undirected graph Go(V ,Eo) with edge
weights {we}e∈Eo then we define:

plus-one graph = a graph G1(V ,E1) s.t. E1 = Eo ∪ {e1},
with (e1 6∈ Eo)

G = {G1(V ,E1) : G1 is a plus-one graph of Go(V ,Eo)}
E = {E1 : E1 is a plus-one edge set of Eo}
ReffEo (e) = effective resistance of the edge e in the edge set
Eo
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Probabilistic Foundation for Link Prediction via Effective
Resistances

Theorem

Given an undirected, observed graph Go(V ,Eo) and a prior on all
edge weights {we}e 6∈Eo , the edge ê 6∈ Eo s.t.

ê = argmin
e 6∈Eo

weReffEo (e)

then Ĝ (V ,Eo ∪ {ê}) is most-likely plus-one graph to have
produced Go(V ,Eo).
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