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Setup

Observe labeled data Dy = {(xi,y:) }icc and unlabeled data Xy = {x;}jcu.
B X ={x1,X2,...,XN} = Xz UXy
m L : labeled indices
m U : unlabeled indices

n Z=LUU

Semi-Supervised Learning

From the given data, can we accurately infer the labelings on U7
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Setup

Observe labeled data Dy = {(xi,y:) }icc and unlabeled data Xy = {x;}jcu.
B X ={x1,X2,...,XN} = Xz UXy
m L : labeled indices
m U : unlabeled indices

n Z=LUU

Semi-Supervised Learning

From the given data, can we accurately infer the labelings on U7

Active Learning
From the given data, can we judiciously “choose” unlabeled points Q@ C U to

label that will improve the output of the underlying learning model?
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- Active Learning vs Semi-Supervised Learning

Semi-Supervised Learning
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Active Learning

Active Learning Query and Update

Train SSL Select query
Classifier points @ C U Query oracle for . _
with £ and via acquisition labels {yx}reo Update £ = £UQ
labels {y;}jec function, A
1 |
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Graph Construction

Given data X = {x1,X2,...,Xn}, construct similarity graph G(Z, W), where
" Z=1{1,2,...,N}
m Wi = k(xq, %)
mdi=3 e, Wi
m degree matrix D = diag(d1,d2,...,dn)

Graph Laplacians
m L =D — W, unnormalized
® L, =1—D"'*WD™'/?, normalized
m L., =1 — D 'W, random walk
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Binary Graph-Based SSL

Consider family of graph-based SSL models, using a perturbed graph Laplacian
L. =L+7°I:

1 = arg min %(u, Lyu) + Zé(uj,yj) =: argmin Jy(u;y), (1)

uerN fer uerN
for different loss functions ¢ with parameter ~:
m {(2,9) = (x —y)?/2v*,  (Regression)
m l(z,y) =In(14+e"¥/7), (Logistic)
m {(z,y) = —InT,(zy), (Probit)
where U, (t) = fioo 1~ (s)ds is CDF of log-concave PDF 1. (s).
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Multiclass Graph-Based SSL

With perturbed graph Laplacian L, and n. the number of classes,

U = argmin l(U,LTU>F+Z:€(uj,yj) =: argmin J;(U;Y),

UeRN Xn¢ jec UeRN Xn¢
for different loss functions ¢ with parameter ~:
m {(s,t) = 55[ls — t[3, (Multiclass Regression)

m ((s,t) =—>" tcIn(sc), (Cross-Entropy)
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Probabilistic and Bayesian Perspective

Optimizer 1 can be viewed as maximum a posteriori (MAP) estimator

argmin Jy(u;y) <= argmax exp(—Je(u;y))
u u

- arginax exp (—%(u, L.ru>) exp <— Zﬂ(uj,yj)>

JjeEL

prior likelihood

= argmax P(uly)

for a posterior distribution P(uly) x exp(—J¢(u;y)).

m Different loss functions give different likelihoods

Kevin Miller AL in GBSSL March 26, 2021



Side Note

Ginzburg-Landau/Graph MBO?

double-well potential

1 2 2 A 2
(u, Lrw) + - Z(ui -7 +3 Z(Uj - Yj)

i€z JEL

N =

J(wy) =

® non-convex
m corresponding posterior?
P(uly) x exp _—1<u L:u) + 1 Z(u2 —1)% | exp -2 Z(u —y;)?
g VT g i 2 7Y
ez
m non-Gaussian prior, Gaussian likelihood

= multimodal distribution
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“Gaussian Models”

Harmonic Functions (HF) Model

Assuming hard constraints for labeling!, have conditional distribution:
-1 —1
uyly ~ N(uny, Lu,u)» uny = =Ly Lu,.cy
with ugz =y.

Gaussian Regression (GR) Model
With £(z,y) = (z — y)?/27?, then likelihood /prior/posterior is Gaussian.

P(uly) o exp (— 5w Lou) ) exp (—; > (s - yjf)

JjeEL

~N(m,C), m= L~ CPTy ¢ =L+~ PTP,
i Y

where P : RN — RI*l is projection onto labeled set £.

L Does not actually rigorously fit into Bayesian framework like others
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Look-Ahead & Model Retraining

Look-Ahead model with index k£ and label ys:
plus k

. k 1 ——
argmin J" (u;y, yx) := arg min §(u, Lyu) + Zﬁ(uj7yj) + 0(uk, Yr) -

N N
uck uck jecr

m For Gaussian model, look-ahead posterior distribution’s parameters from the
current posterior distribution

m without expensive model retraining — rank-one updates

GR: m"¥ =m + Y-l oRve = 0 -

T
Y2+ Cri CkaC:,k

2+ckk
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Non-Gaussian, Probit

When likelihood not Gaussian, posterior IP(uly) is non-Gaussian..
Problems:
m model classifier as mean y = Ey~p [u]? or MAP estimator
a = arg max P(uly)?
m compute mean, i, and covariance C = E,p [(u —p)(u— ,u)T]?
(potentially expensive!)
m Look-ahead updates??

With non-Gaussian models, we lose these nice properties. What to do?
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Non-Gaussian, Probit

When likelihood not Gaussian, posterior IP(uly) is non-Gaussian..
Problems:
m model classifier as mean y = Ey~p [u]? or MAP estimator
a = arg max P(uly)?
m compute mean, i, and covariance C = E,p [(u —p)(u— ,u)T]?
(potentially expensive!)
m Look-ahead updates??

With non-Gaussian models, we lose these nice properties. What to do?

Let’s approximate with Gaussian, and see what happens!
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Laplace Approximation

Laplace approximation is a popular technique for approximating non-Gaussian
distributions IP with a Gaussian distribution.
x~N(&,C), %=argmax P(x), C= (—V2 ln(ll:’(x))|x:,z)71 ,
x€RN
where
m X : MAP estimator of IP

m (' : Hessian matrix of the negative-log density of IP, evaluated at %
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Figure 1: photo credit : http://wiljohn.top/2019/04/14/PRML4-4/
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Spectral Truncation

Consider only first M < N eigenvalues and eigenvectors of graph Laplacian, L:

0=XA <X <...<Anm, VI,Vo,...,VAL.
lAT:diag(A1+72,...,)\M+72)
BV =[v vo ... VM]ERNXM

m o € R (binary), A € RM*"e (multiclass)
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Spectral Truncation

Consider only first M < N eigenvalues and eigenvectors of graph Laplacian, L:
0=X <A< < A,
A, :diag()\l +72,...,)\M+72)
BV =[vi v2 ... vl c RVxM
m o € R (binary), A € RM*"e (multiclass)
Binary: (u=Va)

1
Je(wiy) = {u Leu) + ) €(uj.5)
JjEL

(o, Ara) + ) Uef Va,y;) = Jo(asy),

JEL

Vi,Va,...,V)r.

—

N | =
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Spectral Truncation

Consider only first M < N eigenvalues and eigenvectors of graph Laplacian, L:
0=X <A< < A,
m A :diag()\l +72,...,)\M+72)
BV =[vi v2 ... vl c RVxM
m o € R (binary), A € RM*"e (multiclass)
Binary: (u=Va)

1
Je(wiy) = {u Leu) + ) €(uj.5)
JjEL

(o, Ara) + ) Uef Va,y;) = Jo(asy),

JEL

Vi,Va,...,V)r.

—

N | —

Multiclass: (U = V A)
1 C
JU;Y) = (U, L:U)r + z;z(uf,yﬂ
je

1 ) -
= (A AA)p + D e VAY) = Ju(4Y).
JEL
Kevin Miller
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Laplace Approximation - Binary

aly ~ N(&,Ca), & = argmin J(a;y),

acRM
and then calculate covariance of Laplace Approximation Cyq

Vajg(a; y)=Aa+ Z F(e]TVa, yj)VTe]- =Aa+ VT Z F(eJTVoz7 Y;)€5,
jeL jec

Vidilesy) =A + VT <Z F’(e;frVa, yj)eje;"r> v,

jeL

-1
> éa = (Vije(oé,Y))71 - <AT + VT <Z F/(efva,yj)eje]r> V)

jeL
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Approximate Look-Ahead Update - Binary

How to approximate look-ahead model update, &"¥* = arg min jek’y"?

m have C4 (i.e. inverse Hessian)
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Approximate Look-Ahead Update - Binary

How to approximate look-ahead model update, &*'¥% = arg min jek’y"?
= have Cy (i.e. inverse Hessian)

Try one step of Newton's method, starting at &:

&= a— (VAP (Goy.u) (Vadi P (ésy,un))

where
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Approximate Look-Ahead Update - Binary

How to approximate look-ahead model update, &"¥* = arg min jek’y"?

m have C4 (i.e. inverse Hessian)

Try one step of Newton's method, starting at &:

&= a— (VAP (Goy.u) (Vadi P (ésy,un))

where

Simple update!

* GR: this reduces to the exact look-ahead update!
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Approximate Look-Ahead - Multiclass

Similar result for multiclass case, but a little lengthy to describe...
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Approximate Look-Ahead - Multiclass

Similar result for multiclass case, but a little lengthy to describe...

Ao = A= (VAT (A Y,yh) T (Vad™ ™ (A Y.y")

simplifies to be rank n.
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Model Change Acquisition Function

Calculating the approximate change in a model (i.e. classifier) from the addition

of an index k and associated label i has been investigated previously?.

2Cai, Zhang, and Zhou, “Maximizing Expected Model Change for Active Learning in Regression”, 2013; Karzand and Nowak, “MaxiMin
Active Learning in Overparameterized Model Classes”, 2020.
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Model Change Acquisition Function

Calculating the approximate change in a model (i.e. classifier) from the addition

of an index k and associated label i has been investigated previously?.

Employ approximate update (recalling that Va = u):

A(k) = min [[¢"" —dfz ~ min Hﬁk’y’“ — 1|, = min Hd’wk - &
yre{£1} ype{+1} 2 ype{zx1} 2
: F(vk)Td7yk) A k

= min - = av H

yre{£1} |14+ F/((vF)T &, yr)(vF)TCavF 2
F(a A

- GRS — TR

ve€{£1} |1+ F'(lg, yr)(VE)TCavk

2Cai, Zhang, and Zhou, “Maximizing Expected Model Change for Active Learning in Regression”, 2013; Karzand and Nowak, “MaxiMin

Active Learning in Overparameterized Model Classes”, 2020.
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Checkerboard 3 Demo

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Checkerboard 3 Dataset Ground Truth
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Iter 1, Acc = 0.47 Acquisition Function
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Connection to Reinforcement Learning

Active Learning — select ‘useful” points to label that will improve your classifier

Representative

m Representative : “looks” representative of the data

= Informative : help to refine the classifier's decision boundary
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Connection to Reinforcement Learning

Active Learning — select ‘useful” points to label that will improve your classifier

Representative

m Representative : “looks” representative of the data

= Informative : help to refine the classifier's decision boundary

Reinforcement Learning — learn optimal policy via sequential decision making

Exploration Exploitation

m Exploration : “explore” the inherent geometric/clustering structure

m Exploitation : “exploit” the classification structure that have learned so far
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Multiclass Experiments - HSI

Graph Construction:
m 15 nearest neighbors, cosine
similarity
m Zelnik-Perona scaling

m M = 50 eigenvalues

@ Salinas A Experiments:

m initially label 2 per class
m Batch
m 100 active learning iterations,
select B = 5 query points at
each iteration
m MGR (Multiclass Gaussian
Regression)
@) Urban m CE (Cross-Entropy)
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Results - Multiclass

Multiclass GR Results:

1.00

+ MCMGR
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Future Directions

m Adapt this to more useful GBSSL models?

m Currently only viable for convex loss functions (i.e. Laplace Approximation)
m e.g. graph MBO posterior is multimodal, so Laplace approximation
meaningful?

m Other active learning criterion that take advantage of the nice model

properties we have here?

m Deep Learning?
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Deep Learning Active Learning M

Why not apply this work?

3Cai, Zhang, and Zhou, “Maximizing Expected Model Change for Active Learning in Regression”, 2013.
#Ash et al., “Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds”, 2020.
5Gal, Islam, and Ghahramani, “Deep Bayesian active learning with image data”, 2017.
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Deep Learning Active Learning

Why not apply this work?
Neural network Fy(-), parameterized by weights # € R (D usually very large).

N

J(0;%,y) =Y U(Fa(xi),y:) + R(0)

i=1

m supervised vs semi-supervised learning

3Cai, Zhang, and Zhou, “Maximizing Expected Model Change for Active Learning in Regression”, 2013.
#Ash et al., “Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds”, 2020.
5Gal, Islam, and Ghahramani, “Deep Bayesian active learning with image data”, 2017.
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Deep Learning Active Learning

Why not apply this work?
Neural network Fy(-), parameterized by weights # € R (D usually very large).

N
J(0;%,y) =Y U(Fa(xi),y:) + R(0)
i=1
m supervised vs semi-supervised learning
m look-ahead? model change?

m inverse Hessian — O(D?) for NN :(
m approximate model change via approximated gradient % (Caiet al®)

m cluster on space of gradients*

3Cai, Zhang, and Zhou, “Maximizing Expected Model Change for Active Learning in Regression”, 2013.
#Ash et al., “Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds”, 2020.
5Gal, Islam, and Ghahramani, “Deep Bayesian active learning with image data”, 2017.
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Deep Learning Active Learning

Why not apply this work?
Neural network Fy(-), parameterized by weights # € R (D usually very large).

N

J(0;%,y) =Y U(Fa(xi),y:) + R(0)

i=1
m supervised vs semi-supervised learning
m look-ahead? model change?
m inverse Hessian — O(D?) for NN :(
m approximate model change via approximated gradient % (Caiet al®)
m cluster on space of gradients*
m Bayesian interpretation?
m Fp non-linear, J highly non-convex —> multimodal distribution

m MCMC-"esque” sampling from posterior via Dropout®

3Cai, Zhang, and Zhou, “Maximizing Expected Model Change for Active Learning in Regression”, 2013.
#Ash et al., “Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds”, 2020.

5Gal, Islam, and Ghahramani, “Deep Bayesian active learning with image data”, 2017.
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Overview

Applied Math Ph.D. Advice

Kevin Miller AL in GBSSL March 26, 2021



Ph.D. Program Application Advice

Overall Advice

m Cultivate relationships with multiple professors/mentors
m Resume

m Research experience (e.g. REU, undergraduate research)
m Math Subject GRE

m Research Statement + Personal Statement — do your homework

m Big vs Small & “Traditional” vs “Newer” Programs
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Ph.D. Program Timeline

Align with Advisor
(Year ~2.5)
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Ph.D. Program Timeline

(Year ~2.5)
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